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INTRODUCTION 

Relevance and Nature of Problem 

One in 8 American women will develop breast cancer in her lifetime. Despite the advances in 
detection and treatment of breast cancer, the mortality from breast cancer has not changed 
significantly over the last forty years. Breast cancer treatments significantly include radiation 
and chemotherapy. These regimens are acutely limited by the lack of ability to specifically 
target tumor cells. The emotional state of the patient which could be a critical factor in 
combating the disease is gravely debilitated by the psychosomatic trauma of these severe 
treatment procedures. Even those patients that survive, face the possibility of remission and an 
uncertain future. Unlike the survival after many other cancers, which tend to level off after 5 
years, survival after diagnosis of breast cancer continues to decline. Even women who try to 
make preventive life-style changes cannot alter the most significant risk factors like age or 
family history. In this grim scenario, a basic understanding of the cellular processes underlying 
breast cancer is mandated before effective therapies can be developed or even attempted, 
ß-catenin is a multifunctional protein that primarily helps link the cadherins (at the adherens 
junctions) to the cytoskeleton. However, ß-catenin is also a crucial signaling molecule that 
participates in differentiation and proliferation pathways. The wnt signaling pathway, known to 
reverse contact inhibition in mouse mammary cells in vitro and mammary cancer in mice (7), 
results in increased levels of cytoplasmic ß-catenin (8). Wnt-l stimulation results in decreased 
activity of glycogen synthase kinase (GSK)-3ß, that normally phosphorylates the tumor 
suppressor adenomatous polyposis coli (APC) gene product (8,9). When APC is not 
phosphorylated, it leads to the stabilization of ß-catenin. The stable ß-catenin interacts with the 
transcriptional activators LEF/TCF (10). The ß-catenin-TCF/LEF complex translocates to the 
nucleus and effects gene expression (1,2). The genes activated may include those that stimulate 
proliferation or antagonize apoptosis (11,12). And finally, stable forms of ß-catenin by 
themselves are oncogenic (3,12,13). These observations strongly point towards the stability of 
cytoplasmic ß-catenin as a " smoking gun" (12) linking cell adhesion and tumorigenesis. Thus, 
a strategy of down-regulating ß-catenin could constitute a potential way of treating breast 
cancer. 
In this study, we investigate the regulation of cytoplasmic ß-catenin. 

Background 

ß- Catenin and breast cancer 

Cells touch one another through a number of different surface molecules; among the most 
intriguing are the cadherins and their associated proteins (14). These proteins, in addition to 
maintaining adhesion of adult tissues, via the adherens junctions, are critical during development 
and tumorigenesis (15). Cadherin function has been shown to depend on several associated 
proteins, namely; a, ß, and (plakoglobin) y catenin (16). These molecules, link cadherins to the 
actin cytoskeleton and are probably involved in relaying cadherin-mediated-contact signals (17). 
The ß-catenin/cadherin association requires serine phosphorylation of the cadherin molecule 



(17). ß-catenin is itself a substrate for tyrosine phosphorylation and can also act as a link 
between Growth factor receptors (such as the EGFR) and the adherens junction complex (18,19). 
Mutation of the ß-catenin gene in mice, by homologous recombination, results in embryonal 
lethality. When the expression of E-cadherin and the catenins was analyzed in human breast 
carcinomas, lobular breast carcinomas showed disturbances of E-cadherin and catenins in a high 
frequency of cases (20). In ductal breast carcinomas (where E-cadherin is often unchanged), a 
high frequency of cases showed disturbance of alpha- and/or gamma-catenin expression. 50 % of 
cases with defects in E-cadherin and catenins had lymph node metastasis, whereas this number 
was low in cases with undisturbed cadherin/catenin expression (20). 
A truncated stable form of ß-catenin itself acts as an oncogene (9). The phosphorylation state of 
ß-catenin can also influence the transformed phenotype (19,21). Further, cytoplasmic ß-catenin 
associates with the tumor suppressor adenomatous polyposis coli (APC) gene product (19). 
Over-expression of APC results in the cell cycle being blocked at the Gl/S boundary (19). 
Recent evidence indicating that the tumor suppressor effects of APC are dependent upon its 
ability to destabilize ß-catenin, strongly argue the significance of ß-catenin in the control of cell 
proliferation (5,22). 

ß-catenin is a signaling molecule 
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ß-catenin participates in developmental 
patterning in Xenopus (23). Ectopic expression 
of ß-catenin by mRNA injection into the ventral 
region of Xenopus embryos induces a secondary 
dorso-anterior body axis, giving rise to two 
heads, notochords, and neural tubes (24). Wnt-1, 
the vertebrate homologue of wingless is known 
to reverse contact inhibition in mouse mammary 
cells in vitro and to cause breast cancer in mice 
(24). Wnt-1 stimulation results in decreased 
activity of glycogen synthase kinase (GSK)-3ß, 
that normally phosphorylates the tumor 
suppressor adenomatous polyposis coli (APC) 
gene product (5,8). When APC is not 

phosphorylated, it leads to the stabilization of ß-catenin through an unknown mechanism. Now, 
ß-catenin interacts with transcriptional activators LEF/TCF, translocates to the nucleus, and 
effects gene expression (10,25). The genes activated may include those that stimulate 
proliferation or antagonize apoptosis. Taken together, these finding strongly argue the 
significance of ß-catenin and its cytoplasmic levels in the integration of adhesion, differentiation 
and proliferation pathways. A clearer understanding of this crucial signaling pathway holds 
tremendous potential to offer realistic strategies to combat breast cancer. 



ß-catenin stability and APC 

The Adenomatous polyposis Coli (APC) gene is a tumor suppressor, found mutated in most 
human colon cancers. APC directly binds ß-catenin (26). APC is a part of the wnt signaling 
pathway, and when phosphorylated by GSK3ß, down-regulates ß-catenin levels. Cancer cells 
with mutant APC contain abnormally high levels of cytoplasmic ß-catenin (4,5). Over- 
expression of APC blocks progression of the cell cycle from G0 to the S phase (27). This 
observation suggests that loss APC activity (resulting in ß-catenin stabilization ) could lead to 
uncontrolled cellular proliferation. Indeed, the wnt signal, thought to inactivate APC, can cause 
cell proliferation in certain tissues. Although APC has been primarily studied in colon cancer, 
there is strong evidence that loss of heterozygosity at the APC locus may be involved in 
mammary tumors in humans. The Multiple intestinal neoplasia (Min) allele is a mutant allele of 
the murine APC locus. Min-/+ mice are predisposed not only to intestinal but mammary 
carcinoma as well (7). Among Min-/+ mice exposed to carcinogenic material, over 75% 
developed mammary tumors, while Min +/+ mice displayed no evidence of mammary tumors 
(7). These observations suggest that APC, by virtue of its ability to regulate ß-catenin, can play 
an important role in predisposing breast tissue for further hyperplastic events (11). 

The ubiquitin-proteasome pathway 

Peptides, 
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Our preliminary evidence demonstrates that the cytoplasmic, "signaling pool" of ß-catenin is 
regulated at the level of stability by the ubiquitin-proteasome pathway. 
The ubiquitin-proteasome pathway is involved in the processing and rapid degradation of many 
short-lived regulatory proteins. Mitotic cyclins, cyclin-dependent kinase inhibitors, the tumor 
suppressor p53, transcriptional activators NF-KB, v-jun, and v-fos are examples of proteins that 
are degraded by this highly specific pathway (28-31). 

The ubiquitin pathway effects the 
degradation of proteins in two steps (28). 
First, multiple ubiquitin moieties are 
covalently attached to a target protein. 
Second, the multi-ubiquitinated protein is 
degraded by the 26S proteasome 
complex. Conjugation of ubiquitin 
moieties, to a substrate, is performed in a 
three-step process. Following activation 
of the C-terminal glycine of ubiquitin by 
enzyme El, one of several E2 enzymes 
transfers the activated ubiquitin to the 

substrate that is specifically bound to an enzyme E3. E3 catalyzes the formation of an isopeptide 
bond between the activated glycine on the ubiquitin and s-NH2 group of a lysine residue in the 
substrate (or in the previously conjugated ubiquitin moiety). The E2 and E3 enzymes bind the 
substrate, and help transfer the ubiquitin moieties. There are dozens of genes, unrelated to each 
other, that encode E2 and E3 enzymes. The specificity of the ubiquitin pathway is thought to 
reside in the E3 enzymes (28). Following targeting (e.g. phosphorylation, as in the case of NF- 
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KB) and multi-ubiquitination, the substrate protein is rapidly degraded by a large multi-subunit 
structure called the proteasome. 

PURPOSE 

The general aim of this investigation is to study the regulation of cytoplasmic ß-catenin stability, 
and the involvement of the tumor suppressor APC in this process. 

Our working model is that ß-catenin is recruited by a cadherin to the plasma membrane where 
it is phosphorylated on serine residues (analogous to 1Kb). This phosphorylated ß-catenin can 
either be recruited to an adhesion complex or can interact with APC via its armadillo domains. 
In the presence of active GSK3ß, APC is phosphorylated and its E3 activity is activated, ß- 
catenin is also phosphorylated by GSK3ß. In response to these events, ß-catenin is ubiquitinated 
and degraded by the proteasome. When APC or ß-catenin or both are mutated, the result is 
accumulation of cytoplasmic ß-catenin. At elevated levels, cytoplasmic ß-catenin is oncogenic. 

SPECIFIC AIMS (Hypotheses to be tested) (Year 1) 

Aim 1. To test the hypothesis that cytoplasmic ß-catenin is regulated at the level of stability 
by the ubiquitin-proteasome pathway. 

Aim 2. To establish an in vitro cell-free model to study ß-catenin ubiquitination and 
degradation 

METHODS 

Aim 1. To test the hypothesis that cytoplasmic ß-catenin is regulated at the level of stability by 
the ubiquitin-proteasome pathway. 
• The effect of proteasomal inhibitors on cytoplasmic ß-catenin stability was tested. The breast 

cancer cell line SKBR3 (APC+/+) and the colon cancer cell line SW480 (APC-/-) were used 
in this experiment. Cells were treated with the proteasomal inhibitors (peptidyl aldehydes) 
ALLN and Lactacystin (32) for 12 hr. Cells were lysed in a hypotonic lysis buffer and 
dounce homogenized, clarified in a ultracentrifuge (100,000g for 1 hr) to yield the SI00 
cytoplasmic fraction (free of membranous components). To obtain cytoplasmic fractions 
including membrane vesicles, the dounced lysate were clarified in a table-top microfuge 
(10,000gfor 10 min). 

• The half-life of ß-catenin in E36ts20 cells (33), that harbor a temperature sensitive El 
enzyme, was monitored at permissive and non-permissive temperatures 

• SKBR3 cells were transient transfected with His6-tagged ubiquitin (34) and HA-tagged ß- 
catenin. Cells were treated with/without proteasomal inhibitors, ubiquitinated proteins were 
purified with Ni-NTA columns (34), and Western blotted with anti-HA antibody (helps 
distinguish from native ß-catenin). 



Aim 2.  To  establish an in vitro  cell-free model to  study  ß-catenin ubiquitination  and 
degradation. 
In vitro ubiquitination and degradation assays will be established according to published 
protocols (29,35,36). 
• Recombinant ß-catenin were generated in a combined in vitro transcription-translation 

system (Promega). mRNA synthesized from 2 ug of template DNA was used in a 100 ul 
translation reaction mixture containing 50 ul of rabbit reticulocyte lysate (RRL). 

• Conjugation assays (29,35) are performed essentially as described by Dr. Ciechanover 
(29,30,32). Briefly, the reaction mixture (30 ul) consisted of 1 ul of either programmed 
RRL containing the HA-tagged ß catenin or unprogrammed RRL, 10 ul SKBR3 hypotonic 
lysate (5-6 mg/ml) or, 20 ng El, 20 ng E2 (UbcH5b) and, either 40 ng E3 (E6- 
AP)(recombinant enzymes were kindly provided by Dr. Allan Weissman) or 40 ng of 
various APC deletion constructs. 5 ug ubiquitin, 40 mM Tris HC1 (pH 7.6), 5 mM MgCl2, 
2mM DTT, 0.5 ug of ubiquitin aldehyde (kindly provided by Dr. Keith Wilkinson), 5mM 
ATPyS, lOmM Phosphocreatine, and 5 units Phosphocreatine Kinase, were also included in 
the reaction mixture. In Assays without ATPyS, 20 mM EDTA, 0.5 ug of hexokinase and 
10 mM 2-deoxyglucose substituted for ATPyS. Ubiquitination assays were performed for a 
1 hr period at 25°C. Degradation assays included ATP (instead of ATPyS, which cannot be 
used by the proteasome but can be utilized by the ubiquitination enzymes), and were 
performed at 37°C for 2 hr. Following incubation, reaction mixtures are resolved by Tris- 
glycine SDS-PAGE (4-12%). 

• Western blotting was performed using anti-HA (BabCo) and anti-ß-catenin antibodies 
(Transduction labs). 

RESULTS 

Aim 1. To test the hypothesis that cytoplasmic ß-catenin is regulated at the level of stability by 
the ubiquitin-proteasome pathway. 
1. Results indicate that treatment of SKBR3 cells with proteasomal inhibitors ALLN and 
Lactacystin (32) result in the accumulation of high-molecular weight, ß-catenin-ubiquitin 
conjugates in the cytoplasm (Addenda; Fig. 1 ). 
2. E36ts20 cells harboring a thermolabile Ubiquitin activating (El) enzyme (33), when grown at 
the non-permissive temperature (39.5°C) accumulate ß-catenin (half-life is extended, compared 
to cells grown at the permissive temperature; 30°C ) (Fig. 2). 
3. In a more direct approach, SKBR3 cells were co-transfected with a vector encoding His6- 
tagged ubiquitin (34) and a vector encoding HA-tagged ß-catenin (Fig. 3). 48 hr after 
transfection, the cells were treated with the proteasome specific inhibitor, Lactacystin, for 6 hr. 
Ubiquitinated proteins were purified by Ni-NTA chromatography (34) and Western blotted with 
anti-HA antibody (Fig. 4 ). ß-catenin was found to accumulate as high- molecular weight 
ubiquitinated conjugates, in response to the proteasome-specific inhibitor Lactacystin. 
These observations demonstrate that cytoplasmic ß-catenin is regulated at the level of stability by 
the ubiquitin-proteasome pathway. 



Aim 2. To establish an in vitro cell-free model to study ß-catenin ubiquitination and 
degradation. 
In vitro ubiquitination and degradation assays  were established according to published 
protocols (29,35,36) and with the help of our collaborators Drs. Aaron Ciechanover and Allan 
Weissman. 
1. Cytosol that included membrane and/or particulate material was able to ubiquitinate ß- 
catenin more efficiently than a SI00 preparation that lacked them (Fig. 5). 
2. Cytosol extracted from cells in different phases of the cell cycle, strikingly varied in their 
ability to ubiquitinate ß-catenin (Fig. 6). 
3. The most efficient ubiquitination activity was observed in the extracts from cells in M-phase 
(Fig. 6). 

Conclusions 

1. Cytoplasmic ß-catenin is regulated at the level of stability by the ubiquitin-proteasome 
pathway. 

2. In vitro, cytosol that included membrane and/or particulate material ubiquitinated ß-catenin 
more efficiently than a S100 preparation that lacked them. 

3. Cytoplasmic extracts from M-phase cells displayed maximal ability to ubiquitinate 
ß-catenin, in vitro. 
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ADDENDA 
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Figure 1.  ß-catenin accumulates as high- molecular weight ubiquitinated conjugates, in 

response to the proteasomal inhibitor ALLN and Lactacystin. ALLM is the negative control. 

In the right panel, ß-catenin was immunoprecipitated with a C-terminal monoclonal antibody 

from a NP-40 lysate, and Western blotted with anti-ubiquitin antibody. NI: Non-Immune, ß: 

ß-catenin. 
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Figure 2. Pulse chase in E36ts20 cells harboring a thermolabile Ubiquitin activating (El) 

enzyme. When grown at the non-permissive temperature, the half-life of ß-catenin is 

extended. 
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EXPERIMENTAL DESIGN 

Co- transfection 
His6-Ub, 
HA - ß-catenin (wt) 
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Figure 3. Experimental design to test the hypothesis that cytoplasmic ß-catenin is regulated 
at the level of stability by the ubiquitin-proteasome pathway. 
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Figure 4. ß-catenin accumulates as high- molecular weight ubiquitinated conjugates, in 
response to the proteasomal inhibitor Lactacystin. 
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Figure 5. In vitro ß-catenin ubiquitination assay. Cytosol that included membrane material 

(vesicular lysate) ubiquitinated ß-catenin more efficiently than a S100 preparation that 

lacked them. 

200 kD 

— 97 

Figure 6. In vitro ß-catenin ubiquitination assay. Cytosol extracted from cells in different 

phases of the cell cycle, strikingly varied in their ability to ubiquitinate ß-catenin. The most 

efficient ubiquitination activity was observed in the extracts from cells in M-phase. 
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Figure 7. 

The second ß-catenin binding repeat of APC contains a free cysteine 
consensus region present in the 
HECT family ubiquitin ligases 
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Figure 8. 
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